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Abstract

trol of invasive alien species.

ecology

Sun coral (Tubastraea spp.) is an invasive species that poses a considerable threat to coastal ecosystems. Therefore,
early detection is essential for effective monitoring and mitigation of its negative impacts on marine biodiversity.
This study presents a novel computer vision approach for automated early detection of invasive Tubastraea species

in underwater images. We used the YOLOvS8 object detection model, which was trained and validated on a manually
annotated dataset augmented with synthetic images. The data augmentation addressed the challenge of limited
training data that is prevalent in underwater environments. The model achieved performance metrics (in terms

of precision accuracy, recall, mAP50, and F1 score) of over 90% and detected both open and closed coral stage
classes. Test phase results were compared with expert validation, demonstrating the model’s effectiveness in rapid
detection (16 ms) and its limitations in areas highly covered by Tubastraea. This study demonstrates the potential

of deep learning with data augmentation to facilitate the rapid assessment of large image datasets in monitoring sun
coral bioinvasion. This approach has the potential to assist managers, taxonomists, and other professionals in the con-
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1 Introduction

Bioinvasion by sun corals refers to the introduction
and establishment of Tubastraea species in non-native
marine environments (Creed et al. 2017a; Dutra et al.
2023). Originally native to the Indian and western Pacific
Ocean, sun coral species have spread over time to large
areas of the Atlantic Ocean, including the Caribbean
Sea (1943), the Gulf of Mexico (1977), the southwestern
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Atlantic (late 1980s) and the Canary Islands (2017)
(Vaughan and Wells 1943; Fenner 1999, 2001; Fenner
and Banks 2004; de Paula and Creed 2004; Lépez et al.
2019). This expansion has raised concerns about their
negative impacts on coastal ecosystems (de Oliveira et al.
2016; Miranda et al. 2018). The invasion of sun corals can
have detrimental impacts on marine ecosystems, includ-
ing competition with native species, predation on local
organisms, changes in the structure of marine commu-
nities, increased environmental risks, and negative eco-
nomic consequences for offshore industries (de Paula
et al. 2014; Hoeksema and ten Hove 2017; Mizrahi et al.
2017; Silva et al. 2019; Braga et al. 2021; Silva et al. 2022).

Addressing the challenges of bioinvasion effectively
requires a comprehensive approach that combines pre-
vention, control, and restoration strategies (Savio et al.
2021). Although control measures can be used to limit
Tubastraea population growth, their effectiveness varies
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depending on ecosystem dynamics and the specific man-
agement techniques employed (Creed et al. 2017b;
Brancaccio et al. 2023). Early detection, where an inva-
sive species is identified in a new area before it spreads
widely, is crucial for successful management. By allow-
ing for timely intervention, early detection can reduce
the costs and difficulties associated with eradication or
control significantly, as this allows for targeted manage-
ment actions to control or eradicate the organism before
it becomes established (Reaser et al. 2019).

Studies using techniques such as remote sensing, a
geographic information system combined with predic-
tive models of environmental vulnerability, environmen-
tal DNA (eDNA), and underwater visual census from
diver surveys have been used to prevent and mitigate the
impacts of invasive species (Lazzaro et al. 2017; Bastos
et al. 2022; Chong et al. 2023). Despite their utility, these
techniques have limitations, including the time required
to obtain results, high implementation costs, and human
physiological constraints such as a lack of workforce and
the decline in taxonomic experience (Cook and Coutts
2017; Lopez-Marcano et al. 2020).

The incorporation of computer vision and deep learn-
ing models in bioinvasion studies is a promising solution
due to their speed and accuracy in detecting species from
underwater images (Pedersen et al. 2019; Lopez-Marcano
et al. 2021; Yang et al. 2021; Saleh et al. 2022). Examples
such as the You Only Look Once (YOLO) object detec-
tion model can automate the identification of invasive
coral species in underwater images, enhancing the effi-
ciency and accuracy of monitoring efforts significantly.
This allows for rapid identification of new infestations
and thereby facilitates timely intervention (Alshahrani
et al. 2024; Wang et al. 2024). Early detection enables
deep learning models to help prevent the further spread
of invasive species and protect marine habitats. Addi-
tionally, the development and application of these mod-
els can help in advancing the field of computer vision and
its application to ecological conservation (Raphael et al.
2020b; Oraiio et al. 2023).

Computer-vision-based object detector models can
be trained using large datasets of one or more species to
identify species automatically using annotated bound-
ing boxes (Pathak et al. 2018; Schneider et al. 2019).
Data augmentation techniques increase the robust-
ness of datasets and model performance by increasing
both the number and diversity of images (Goémez-Rios
et al. 2019b). Some examples of computer vision models
already implemented in the biological context include
AlgaeNet (Gao et al. 2022), WilDect-YOLO (Roy et al.
2023), YOLO-Fish (Muksit et al. 2022), specifically for
coral detection (Mahmood et al. 2017; Jiang et al. 2023).
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However, studies using computer vision models for inva-
sive corals are rare (Tait et al. 2023).

Over the past decade, the International Maritime
Organization (IMO) has emphasized the importance of
early detection and rapid response (EDRR) as a key strat-
egy for mitigating the impacts of invasive aquatic spe-
cies (IMO 2011, 2012). While the specific guidelines and
recommendations do not mention deep learning models
explicitly, the underlying principles of early detection and
prevention align well with the capabilities of these tech-
nologies. In response to the growing need for technolo-
gies capable of supporting EDRR efforts (Martinez et al.
2020), this study evaluates the use of a state-of-the-art
object detection model called YOLO for the early detec-
tion of invasive sun corals in an underwater environ-
ment. While other deep learning models such as Faster
region-based convolutional neural networks (R-CNN),
single-shot detector (SSD), and RetinaNet are also capa-
ble of object detection, YOLO often outperforms them in
terms of speed, accuracy, and ease of use, making it the
preferred choice for many applications, including coral
and fish monitoring (Gayé-Vilar et al. 2024; Santoso et al.
2024). Techniques such as manual annotation and data
augmentation were used for preprocessing. Model per-
formance was compared with coral species identification
by a taxonomist to assess its effectiveness for monitor-
ing tasks, and accuracy was calculated by considering
whether at least one coral was detected correctly in each
test image.

2 Materials and methods

2.1 Data acquisition and preprocessing

A set of 550 images was obtained from the online citi-
zen science platform iNaturalist (https://www.inatural-
ist.org/), which allows for the recording of biodiversity
observations. Images of organisms classified as ‘Tubas-
traea spp. and records made from various locations in
the Atlantic and Pacific Oceans were included. Addition-
ally, unpublished records of Tubastraea spp. (personal
communication) were provided by researchers from the
Instituto de Estudos do Mar Almirante Paulo Moreira
and used in the testing stage of the identification model.
The limited availability of image resources specifically for
Tubastraea species justifies the relatively small sample
size used in this study. Nonetheless, the original dataset
size is comparable to those used in similar deep-learning
research efforts focused on coral detection (Younes et al.
2024).

All images were adjusted to a threshold resolution of
640 pixels, as specified in Ultralytics’ YOLOv8 documen-
tation (Jocher et al. 2023). The YOLO was chosen for this
study because it offers a balance between speed and accu-
racy, making it a practical option for rapid assessment in
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monitoring invasive species. As a single-stage detector,
YOLO predicts both bounding boxes and class probabili-
ties in a single pass, improving efficiency compared to
two-stage detectors like Faster R-CNN (Gaya-Vilar et al.
2024). In this context, YOLOVS is well-suited for species
detection in underwater images and outperforms real-
time object detection (Terven et al. 2023).

The image set was subjected to manual annotation of
the bounding boxes using the web application ‘Computer
Vision Annotation Tool’ (https://www.cvat.ai), where two
classes were created: ‘tubastraea open’ and ‘tubastraea
closed. These two classes represent the sun coral in two
distinct morphological aspects: open polyps and closed
polyps, respectively. For each image, files with annotated
labels and values were exported in the YOLO format.

2.2 Data augmentation

To ensure the best performance of the CNN model,
a large amount of data is required, so the initial set of
images was augmented using the Augmentor (Bloice
et al. 2017) and the Albumentations (Buslaev et al. 2020)
libraries, both developed in the Python language (https://
www.python.org/doc/). The adjustments made were:
flip, which consists of rotating the images; blur; Contrast
Limited Adaptive Histogram Equalization (CLAHE),
which is a contrast enhancement function; elastic distor-
tion, which applies a distortion filter; skew, which tilts
the image toward one of its ends; Gaussian noise; bright-
ness; and contrast. Underwater images often exhibit
non-uniform lighting, blur, haze, low contrast, and color
distortion, resulting in less information than normal
atmospheric optical images (Schettini and Corchs 2010;
Xu et al. 2023). Therefore, the adjustments made were
chosen specifically to simulate variations in seawater tur-
bidity and visibility, which can alter the accuracy of object
detection in the marine environment. The final image set
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consisted of 7150 images (Fig. 1), which were later used
in the training and validation steps of the model. The
intention was to expand the dataset to more than 1000
images, in line with the average size of public coral data-
sets like EILAT and MLC (Gémez-Rios et al. 2019b). This
approach has been used in similar deep-learning studies
for object detection to increase model robustness (Aota
et al. 2021; Li et al. 2021; Gorro et al. 2023; Rusli and
Mohtar 2023; Wang et al. 2024). The text files containing
the annotation values were also augmented and stand-
ardized across the set.

2.3 Training, evaluation and model implementation
The total dataset was divided into 70% (5005 images) for
the training phase and 30% (2145 images) for the valida-
tion phase. By allocating most of the data for training,
the model benefits from a substantial number of exam-
ples, which improves its ability to generalize to new data.
Meanwhile, reserving a portion for validation allows for
the evaluation of unseen data, thereby mitigating overfit-
ting and providing a more accurate assessment of model
performance (Goodfellow et al. 2016). The nano ver-
sion of YOLOV8 was implemented using the Ultralytics
library in Python. Model performance results were then
exported for further statistical analysis and evaluation.
Metrics such as mAP50, recall, F1 score, loss, and detec-
tion speed per object instance were then considered to
evaluate the model performance. Additionally, a test
was performed with a new random set of 100 sun coral
images. Detection accuracy during testing was deter-
mined by checking whether the model made at least one
correct detection in each image, and the total number
of detections made by the model was compared to that
made by a sun coral specialist.

The model was implemented through a graphical inter-
face developed using the open-access library Streamlit

n="7150

Fig. 1 Image set augmentation step with the transformations performed. Geometric transformations include flip, skew, and elastic distortion. Color
and spatial transformations include CLAHE, brightness, and contrast. Kernel filters include blur and Gaussian noise
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(Khorasani et al. 2022) for Python, following the refer-
ence documentation (https://docs.streamlit.io/get-start
ed). The process adopted in this study is described in
Fig. 2.

Interface

Original dataset

A

Image annotation User validation

+

Performance
evaluation

Train/val split

Fig. 2 Development process of the sun coral detector model.
Preprocessing includes the original dataset, image annotation,
data augmentation, and dataset split for the training and validation
process. The YOLO model is run and tested for performance
evaluation, including expert validation and interface development

The initial model training and validation stage was
conducted on a local machine with an Intel Core i5 pro-
cessor, 8 GB RAM, and Windows 11 operating system.
To speed up the training process and benefit from the
increased computational power of the Google Colabora-
tory’s NVIDIA T4 GPU, the model was then trained on
this platform. This transition reduced the training time
significantly from 8 h and 27 min to 3 h and 24 min for
100 epochs.

3 Results
The performance metrics for the model demonstrated its
effectiveness in detecting sun corals. Precision reached
0.906, indicating a low false positive rate. A recall of 1.0
confirmed that the model identified all sun corals accu-
rately and achieved mAP50 and F1 score values of 0.994
and 0.998, respectively, which further solidified the over-
all performance of the model. Figure 3 visually illustrates
the model’s ability to detect sun corals in both open and
closed states.

The loss values, represented by box_loss, cls_loss and
dfl_loss, decreased as the number of epochs increased.
Performance metrics, such as precision, recall, and mAP,
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showed an increasing trend, eventually reaching values
above 90% (Fig. 4).

The normalized detection values, comparing the model
predictions with the true values, were organized into
a confusion matrix (Fig. 5). This matrix shows that the
model detected some false positives, 0.56 for open corals
and 0.44 for closed corals, which were background, and a
false negative rate of 0.04, where closed corals were mis-
takenly identified as background.

The number of instances identified as closed corals was
greater than that identified as open corals. In the model
generated, corals were mostly present in the central
position of the bounding boxes. In addition, the smaller
the size of each bounding box, the greater its detection
capacity (Fig. 6).

The model was tested on a new set of sun coral images
(n=100), resulting in a total of 261 true positives and 27
false positives, as shown in Fig. 7. The average speed of
detection values per image was 2.5 ms in preprocessing,
16.0 ms in inference and 30.3 ms in post-processing. The
accuracy of the model was 93% for the test dataset and
was related to the task of detecting at least one coral in
each image. This ensured the ability of the model to iden-
tify the presence of corals quickly and accurately, which
is deemed essential for effective monitoring and conser-
vation efforts. Meanwhile, the detection task performed
by a specialist resulted in a total of 786 identifications for
the same images, which means that the model was able to
correctly predict 33% of the total detections made by the
user, with a confidence level of 60%.

4 Discussion

This work evaluated the use of the YOLOvV8 model for the
early detection of sun corals (Tubastraea) from images,
aiming to assist in the monitoring, prevention, and
response to their bioinvasion. The model exhibited excel-
lent detection performance for both classes of objects,
with precision, mAP, recall, and F1 score all exceeding
90%. Although the application of deep learning models
for coral detection has been documented previously (Shi-
havuddin et al. 2013; Raphael et al. 2020a; Lumini et al.
2023), this study represents one of the first specific ini-
tiatives to focus on an invasive coral genus. While there
are publicly available coral image repositories—such as
EILAT, RSMAS, MLC, and Red Sea—that have been
used to train CNN models (Shihavuddin et al. 2013;
Gomez-Rios et al. 2019b), they lack annotations for the
genus Tubastraea. Furtado et al. (2023) recently incor-
porated sun corals in their image dataset and compared
three alternative machine learning models, achieving an
86% accuracy using a semantic segmentation approach.
Although this study used a different method from our
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approach, it demonstrates the general potential of deep
learning for coral detection tasks.

The results of the study by Raphael et al. (2020a) are
consistent with the findings of this study, as they report a
high level of precision (>90%) using a classification model
for 11 classes of corals (excluding Tubastraea spp.) from
a dataset of 5500 images. The authors argue that only a
deep learning approach can manage large quantities of
images effectively, whether in real time or not, obtained
through monitoring activities. In contrast, Lumini et al.
(2023) attributed the high performance of their model
(F1 score>90%) to their classification method, which
utilized image sets of two groups of organisms (plank-
ton and corals) and a combined system of several CNN
models, while our study focused only on the detection of
a single coral genus.

Regarding data augmentation, Abayomi-Alli et al.
(2021) emphasize the importance of applying data aug-
mentation techniques that intentionally reduce image
quality, such as blurring and Gaussian noise. These

Page 5 of 10

T
“tu dé'tiqeo open 0.93.5 -

,,g | A

(pink) and open (red) coral

transformations helped their model to better detect
regions of interest (in their case, diseases of plant leaves
even in low-quality images). For YOLOVS, a resolution
of 640 pixels or fewer is recommended, as higher reso-
lutions may affect model performance negatively (Jocher
et al. 2023). These findings have been incorporated into
the model presented in this paper, improving its ability to
detect sun corals under various image quality conditions.

The identifications not made by the model suggest that
its performance is better for images with few or just one
sun coral colony, as areas with a higher density of colo-
nies compromise identification (Fig. 7). When testing
the model and comparing its detections with those of a
taxonomist, we observed instances of false negatives,
indicating that the model fails to detect all the target
organisms present in some images. Gonzalez-Rivero et al.
(2020) showed similar results regarding the precision of
a deep learning model trained to identify benthic organ-
isms in coral reefs compared to expert identifications.
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Fig. 4 Loss, precision, recall, mAP50 and mAP50-95 curves. The horizontal axis represents the number of epochs. On the left, the loss plots—
box_loss, cls_loss and dfl_loss—are shown for both the training and validation stages. Additional performance metrics are shown on the right. The
mAP50-95 indicates the average accuracy value when the confidence level is set at 95%

However, in contrast to the present study, some classes  considering the high speed of detection in large volumes
of organisms were not defined at the genus or species  of images.

level. In both studies, we can conclude that automatic While it is acknowledged that the model has limita-
image analysis will not replace expert observation but tions in detecting corals within high-density populations,
will serve as a complementary tool for monitoring tasks, it is important to note that this is a common challenge in

Confusion matrix normalized
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Fig. 5 Confusion matrix (normalized values) showing the ground truth and model predicted classes. In addition to the open and closed coral
classes (Tubastraea open and Tubastraea closed), the model generated a third class defined as background
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Fig. 6 Behavior of classes and overall representation of bounding boxes in the model, taking into account the instances, format, position (x, y),
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object detection tasks, especially in complex and crowded
scenes (Elias 2023; Xu et al. 2023). The performance of
the model could be further evaluated using datasets with
a higher proportion of densely populated coral scenes to
assess its limitations comprehensively. The model is not
intended to replace human expertise but rather to serve
as a valuable tool for coral identification and monitoring.
By providing a preliminary assessment of large datasets,
the model can help to prioritize areas for further expert
investigation.

To optimize the model’s detection capabilities, tasks
such as diversifying the image set and including addi-
tional object classes could improve its ability to distin-
guish sun corals from the background. The sharpness
factor of underwater images has likely influenced the
detection process, as noted by other studies (Gémez-Rios
et al. 2019a; Gonzalez-Rivero et al. 2020; Lumini et al.
2023). This highlights the inherent challenges of work-
ing with underwater images, which often involve issues
such as brightness, particulate matter, high diversity of
organisms in the same frame, and proximity of organisms
(aggregations) (Gomez-Rios et al. 2019a).

i
25
tubastraea open 0.85~
-0 .

Fig. 7 Example of detections in the test dataset. Images include
the class name and confidence level. a, the model shows false
negatives by detecting only one colony; b, the model was able
to detect all the colonies present
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Considering the DAFOR scale (Sutherland 2006),
which has been applied in studies related to sun coral
(Silva et al. 2011; Mondal et al. 2018; Machado et al.
2023), the most suitable categories for applying this
model, based on the results of the test phase are: rare
(1%-10% coverage), occasional (11%—25% coverage), and
frequent (26%—50% coverage). Despite its estimated and
subjective nature, this scale can be used effectively along-
side the current model for early detection and monitor-
ing of sun corals.

Piechaud and Howell (2022) used a YOLO model to
map a deep-water xenophyophore species at a depth of
1200 m. Their results confirm that this detection method,
when combined with technologies such as autonomous
underwater vehicles (AUVs), offers an effective alter-
native for monitoring marine biodiversity in scenarios
where traditional techniques, such as a visual census
by divers, are risky or unfeasible. Similarly, the present
model could be incorporated into inspection routines
using remotely operated vehicles (ROVs) for various
applications, including the monitoring of ship hulls, coral
reefs, and seabeds based on local bioinvasion inspection
and control needs.

5 Conclusions
This study demonstrates the feasibility and potential
of computer vision for the automated early detection
of invasive sun coral (Tubastraea spp.) in underwater
imagery. Using a CNN, we achieved a high accuracy
of over 90% in detecting sun corals and a rapid object
identification per instance (16 ms), demonstrating the
model’s ability to assist experts in rapid and efficient
monitoring. The application of computer vision in this
study suggests its potential in the field of marine ecol-
ogy and conservation and could be used to monitor
areas susceptible to bioinvasion, such as port regions,
offshore activity zones, and marine protected areas.
While the proposed YOLOv8 showed promising
results, comparisons with other deep learning models
and investigations into standardized image acquisition
protocols can help refine this technology. Comparison
with detections of taxonomists suggests that the model,
although still in need of improvement to reduce false
negatives in the images, can be implemented as a sup-
porting tool for monitoring activities and early detec-
tion of sun corals. Future research directions may
include investigating other invasive species, leveraging
annotated image datasets from scientific collections to
train more versatile models, and exploring techniques
such as ensemble methods or data augmentation spe-
cifically designed for dense object detection.
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