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Abstract 

Sun coral (Tubastraea spp.) is an invasive species that poses a considerable threat to coastal ecosystems. Therefore, 
early detection is essential for effective monitoring and mitigation of its negative impacts on marine biodiversity. 
This study presents a novel computer vision approach for automated early detection of invasive Tubastraea species 
in underwater images. We used the YOLOv8 object detection model, which was trained and validated on a manually 
annotated dataset augmented with synthetic images. The data augmentation addressed the challenge of limited 
training data that is prevalent in underwater environments. The model achieved performance metrics (in terms 
of precision accuracy, recall, mAP50, and F1 score) of over 90% and detected both open and closed coral stage 
classes. Test phase results were compared with expert validation, demonstrating the model’s effectiveness in rapid 
detection (16 ms) and its limitations in areas highly covered by Tubastraea. This study demonstrates the potential 
of deep learning with data augmentation to facilitate the rapid assessment of large image datasets in monitoring sun 
coral bioinvasion. This approach has the potential to assist managers, taxonomists, and other professionals in the con‑
trol of invasive alien species.
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1  Introduction
Bioinvasion by sun corals refers to the introduction 
and establishment of Tubastraea species in non-native 
marine environments (Creed et  al. 2017a; Dutra et  al. 
2023). Originally native to the Indian and western Pacific 
Ocean, sun coral species have spread over time to large 
areas of the Atlantic Ocean, including the Caribbean 
Sea (1943), the Gulf of Mexico (1977), the southwestern 

Atlantic (late 1980s) and the Canary Islands (2017) 
(Vaughan and Wells 1943; Fenner 1999, 2001; Fenner 
and Banks 2004; de Paula and Creed 2004; López et  al. 
2019). This expansion has raised concerns about their 
negative impacts on coastal ecosystems (de Oliveira et al. 
2016; Miranda et al. 2018). The invasion of sun corals can 
have detrimental impacts on marine ecosystems, includ-
ing competition with native species, predation on local 
organisms, changes in the structure of marine commu-
nities, increased environmental risks, and negative eco-
nomic consequences for offshore industries (de Paula 
et al. 2014; Hoeksema and ten Hove 2017; Mizrahi et al. 
2017; Silva et al. 2019; Braga et al. 2021; Silva et al. 2022).

Addressing the challenges of bioinvasion effectively 
requires a comprehensive approach that combines pre-
vention, control, and restoration strategies (Savio et  al. 
2021). Although control measures can be used to limit 
Tubastraea population growth, their effectiveness varies 
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depending on ecosystem dynamics and the specific man-
agement techniques employed (Creed et  al. 2017b; 
Brancaccio et  al. 2023). Early detection, where an inva-
sive species is identified in a new area before it spreads 
widely, is crucial for successful management. By allow-
ing for timely intervention, early detection can reduce 
the costs and difficulties associated with eradication or 
control significantly, as this allows for targeted manage-
ment actions to control or eradicate the organism before 
it becomes established (Reaser et al. 2019).

Studies using techniques such as remote sensing, a 
geographic information system combined with predic-
tive models of environmental vulnerability, environmen-
tal DNA (eDNA), and underwater visual census from 
diver surveys have been used to prevent and mitigate the 
impacts of invasive species (Lazzaro et  al. 2017; Bastos 
et al. 2022; Chong et al. 2023). Despite their utility, these 
techniques have limitations, including the time required 
to obtain results, high implementation costs, and human 
physiological constraints such as a lack of workforce and 
the decline in taxonomic experience (Cook and Coutts 
2017; Lopez-Marcano et al. 2020).

The incorporation of computer vision and deep learn-
ing models in bioinvasion studies is a promising solution 
due to their speed and accuracy in detecting species from 
underwater images (Pedersen et al. 2019; Lopez-Marcano 
et al. 2021; Yang et al. 2021; Saleh et al. 2022). Examples 
such as the You Only Look Once (YOLO) object detec-
tion model can automate the identification of invasive 
coral species in underwater images, enhancing the effi-
ciency and accuracy of monitoring efforts significantly. 
This allows for rapid identification of new infestations 
and thereby facilitates timely intervention (Alshahrani 
et  al. 2024; Wang et  al. 2024). Early detection enables 
deep learning models to help prevent the further spread 
of invasive species and protect marine habitats. Addi-
tionally, the development and application of these mod-
els can help in advancing the field of computer vision and 
its application to ecological conservation (Raphael et al. 
2020b; Oraño et al. 2023).

Computer-vision-based object detector models can 
be trained using large datasets of one or more species to 
identify species automatically using annotated bound-
ing boxes (Pathak et  al. 2018; Schneider et  al. 2019). 
Data augmentation techniques increase the robust-
ness of datasets and model performance by increasing 
both the number and diversity of images (Gómez-Ríos 
et al. 2019b). Some examples of computer vision models 
already implemented in the biological context include 
AlgaeNet (Gao et  al. 2022), WilDect-YOLO (Roy et  al. 
2023), YOLO-Fish (Muksit et  al. 2022), specifically for 
coral detection (Mahmood et al. 2017; Jiang et al. 2023). 

However, studies using computer vision models for inva-
sive corals are rare (Tait et al. 2023).

Over the past decade, the International Maritime 
Organization (IMO) has emphasized the importance of 
early detection and rapid response (EDRR) as a key strat-
egy for mitigating the impacts of invasive aquatic spe-
cies (IMO 2011, 2012). While the specific guidelines and 
recommendations do not mention deep learning models 
explicitly, the underlying principles of early detection and 
prevention align well with the capabilities of these tech-
nologies. In response to the growing need for technolo-
gies capable of supporting EDRR efforts (Martinez et al. 
2020), this study evaluates the use of a state-of-the-art 
object detection model called YOLO for the early detec-
tion of invasive sun corals in an underwater environ-
ment. While other deep learning models such as Faster 
region-based convolutional neural networks (R-CNN), 
single-shot detector (SSD), and RetinaNet are also capa-
ble of object detection, YOLO often outperforms them in 
terms of speed, accuracy, and ease of use, making it the 
preferred choice for many applications, including coral 
and fish monitoring (Gayá-Vilar et al. 2024; Santoso et al. 
2024). Techniques such as manual annotation and data 
augmentation were used for preprocessing. Model per-
formance was compared with coral species identification 
by a taxonomist to assess its effectiveness for monitor-
ing tasks, and accuracy was calculated by considering 
whether at least one coral was detected correctly in each 
test image.

2 � Materials and methods
2.1 � Data acquisition and preprocessing
A set of 550 images was obtained from the online citi-
zen science platform iNaturalist (https://​www.​inatu​ral-
ist.​org/), which allows for the recording of biodiversity 
observations. Images of organisms classified as ‘Tubas-
traea spp.’ and records made from various locations in 
the Atlantic and Pacific Oceans were included. Addition-
ally, unpublished records of Tubastraea spp. (personal 
communication) were provided by researchers from the 
Instituto de Estudos do Mar Almirante Paulo Moreira 
and used in the testing stage of the identification model. 
The limited availability of image resources specifically for 
Tubastraea species justifies the relatively small sample 
size used in this study. Nonetheless, the original dataset 
size is comparable to those used in similar deep-learning 
research efforts focused on coral detection (Younes et al. 
2024).

All images were adjusted to a threshold resolution of 
640 pixels, as specified in Ultralytics’ YOLOv8 documen-
tation (Jocher et al. 2023). The YOLO was chosen for this 
study because it offers a balance between speed and accu-
racy, making it a practical option for rapid assessment in 
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monitoring invasive species. As a single-stage detector, 
YOLO predicts both bounding boxes and class probabili-
ties in a single pass, improving efficiency compared to 
two-stage detectors like Faster R-CNN (Gayá-Vilar et al. 
2024). In this context, YOLOv8 is well-suited for species 
detection in underwater images and outperforms real-
time object detection (Terven et al. 2023).

The image set was subjected to manual annotation of 
the bounding boxes using the web application ‘Computer 
Vision Annotation Tool’ (https://​www.​cvat.​ai), where two 
classes were created: ‘tubastraea open’ and ‘tubastraea 
closed. These two classes represent the sun coral in two 
distinct morphological aspects: open polyps and closed 
polyps, respectively. For each image, files with annotated 
labels and values were exported in the YOLO format.

2.2 � Data augmentation
To ensure the best performance of the CNN model, 
a large amount of data is required, so the initial set of 
images was augmented using the Augmentor (Bloice 
et al. 2017) and the Albumentations (Buslaev et al. 2020) 
libraries, both developed in the Python language (https://​
www.​python.​org/​doc/). The adjustments made were: 
flip, which consists of rotating the images; blur; Contrast 
Limited Adaptive Histogram Equalization (CLAHE), 
which is a contrast enhancement function; elastic distor-
tion, which applies a distortion filter; skew, which tilts 
the image toward one of its ends; Gaussian noise; bright-
ness; and contrast. Underwater images often exhibit 
non-uniform lighting, blur, haze, low contrast, and color 
distortion, resulting in less information than normal 
atmospheric optical images (Schettini and Corchs 2010; 
Xu et  al. 2023). Therefore, the adjustments made were 
chosen specifically to simulate variations in seawater tur-
bidity and visibility, which can alter the accuracy of object 
detection in the marine environment. The final image set 

consisted of 7150 images (Fig. 1), which were later used 
in the training and validation steps of the model. The 
intention was to expand the dataset to more than 1000 
images, in line with the average size of public coral data-
sets like EILAT and MLC (Gómez-Ríos et al. 2019b). This 
approach has been used in similar deep-learning studies 
for object detection to increase model robustness (Aota 
et  al. 2021; Li et  al. 2021; Gorro et  al. 2023; Rusli and 
Mohtar 2023; Wang et al. 2024). The text files containing 
the annotation values were also augmented and stand-
ardized across the set.

2.3 � Training, evaluation and model implementation
The total dataset was divided into 70% (5005 images) for 
the training phase and 30% (2145 images) for the valida-
tion phase. By allocating most of the data for training, 
the model benefits from a substantial number of exam-
ples, which improves its ability to generalize to new data. 
Meanwhile, reserving a portion for validation allows for 
the evaluation of unseen data, thereby mitigating overfit-
ting and providing a more accurate assessment of model 
performance (Goodfellow et  al. 2016). The nano ver-
sion of YOLOv8 was implemented using the Ultralytics 
library in Python. Model performance results were then 
exported for further statistical analysis and evaluation. 
Metrics such as mAP50, recall, F1 score, loss, and detec-
tion speed per object instance were then considered to 
evaluate the model performance. Additionally, a test 
was performed with a new random set of 100 sun coral 
images. Detection accuracy during testing was deter-
mined by checking whether the model made at least one 
correct detection in each image, and the total number 
of detections made by the model was compared to that 
made by a sun coral specialist.

The model was implemented through a graphical inter-
face developed using the open-access library Streamlit 

Fig. 1  Image set augmentation step with the transformations performed. Geometric transformations include flip, skew, and elastic distortion. Color 
and spatial transformations include CLAHE, brightness, and contrast. Kernel filters include blur and Gaussian noise
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(Khorasani et  al. 2022) for Python, following the refer-
ence documentation (https://​docs.​strea​mlit.​io/​get-​start​
ed). The process adopted in this study is described in 
Fig. 2.

The initial model training and validation stage was 
conducted on a local machine with an Intel Core i5 pro-
cessor, 8  GB RAM, and Windows 11 operating system. 
To speed up the training process and benefit from the 
increased computational power of the Google Colabora-
tory’s NVIDIA T4 GPU, the model was then trained on 
this platform. This transition reduced the training time 
significantly from 8 h and 27 min to 3 h and 24 min for 
100 epochs.

3 � Results
The performance metrics for the model demonstrated its 
effectiveness in detecting sun corals. Precision reached 
0.906, indicating a low false positive rate. A recall of 1.0 
confirmed that the model identified all sun corals accu-
rately and achieved mAP50 and F1 score values of 0.994 
and 0.998, respectively, which further solidified the over-
all performance of the model. Figure 3 visually illustrates 
the model’s ability to detect sun corals in both open and 
closed states.

The loss values, represented by box_loss, cls_loss and 
dfl_loss, decreased as the number of epochs increased. 
Performance metrics, such as precision, recall, and mAP, 

showed an increasing trend, eventually reaching values 
above 90% (Fig. 4).

The normalized detection values, comparing the model 
predictions with the true values, were organized into 
a confusion matrix (Fig.  5). This matrix shows that the 
model detected some false positives, 0.56 for open corals 
and 0.44 for closed corals, which were background, and a 
false negative rate of 0.04, where closed corals were mis-
takenly identified as background.

The number of instances identified as closed corals was 
greater than that identified as open corals. In the model 
generated, corals were mostly present in the central 
position of the bounding boxes. In addition, the smaller 
the size of each bounding box, the greater its detection 
capacity (Fig. 6).

The model was tested on a new set of sun coral images 
(n = 100), resulting in a total of 261 true positives and 27 
false positives, as shown in Fig. 7. The average speed of 
detection values per image was 2.5 ms in preprocessing, 
16.0 ms in inference and 30.3 ms in post-processing. The 
accuracy of the model was 93% for the test dataset and 
was related to the task of detecting at least one coral in 
each image. This ensured the ability of the model to iden-
tify the presence of corals quickly and accurately, which 
is deemed essential for effective monitoring and conser-
vation efforts. Meanwhile, the detection task performed 
by a specialist resulted in a total of 786 identifications for 
the same images, which means that the model was able to 
correctly predict 33% of the total detections made by the 
user, with a confidence level of 60%.

4 � Discussion
This work evaluated the use of the YOLOv8 model for the 
early detection of sun corals (Tubastraea) from images, 
aiming to assist in the monitoring, prevention, and 
response to their bioinvasion. The model exhibited excel-
lent detection performance for both classes of objects, 
with precision, mAP, recall, and F1 score all exceeding 
90%. Although the application of deep learning models 
for coral detection has been documented previously (Shi-
havuddin et al. 2013; Raphael et al. 2020a; Lumini et al. 
2023), this study represents one of the first specific ini-
tiatives to focus on an invasive coral genus. While there 
are publicly available coral image repositories–such as 
EILAT, RSMAS, MLC, and Red  Sea–that have been 
used to train CNN models (Shihavuddin et  al. 2013; 
Gómez-Ríos et  al. 2019b), they lack annotations for the 
genus Tubastraea. Furtado et  al. (2023) recently incor-
porated sun corals in their image dataset and compared 
three alternative machine learning models, achieving an 
86% accuracy using a semantic segmentation approach. 
Although this study used a different method from our 

Fig. 2  Development process of the sun coral detector model. 
Preprocessing includes the original dataset, image annotation, 
data augmentation, and dataset split for the training and validation 
process. The YOLO model is run and tested for performance 
evaluation, including expert validation and interface development

https://docs.streamlit.io/get-started
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approach, it demonstrates the general potential of deep 
learning for coral detection tasks.

The results of the study by Raphael et  al. (2020a) are 
consistent with the findings of this study, as they report a 
high level of precision (> 90%) using a classification model 
for 11 classes of corals (excluding Tubastraea spp.) from 
a dataset of 5500 images. The authors argue that only a 
deep learning approach can manage large quantities of 
images effectively, whether in real time or not, obtained 
through monitoring activities. In contrast, Lumini et  al. 
(2023) attributed the high performance of their model 
(F1 score > 90%) to their classification method, which 
utilized image sets of two groups of organisms (plank-
ton and corals) and a combined system of several CNN 
models, while our study focused only on the detection of 
a single coral genus.

Regarding data augmentation, Abayomi-Alli et  al. 
(2021) emphasize the importance of applying data aug-
mentation techniques that intentionally reduce image 
quality, such as blurring and Gaussian noise. These 

transformations helped their model to better detect 
regions of interest (in their case, diseases of plant leaves 
even in low-quality images). For YOLOv8, a resolution 
of 640 pixels or fewer is recommended, as higher reso-
lutions may affect model performance negatively (Jocher 
et al. 2023). These findings have been incorporated into 
the model presented in this paper, improving its ability to 
detect sun corals under various image quality conditions.

The identifications not made by the model suggest that 
its performance is better for images with few or just one 
sun coral colony, as areas with a higher density of colo-
nies compromise identification (Fig.  7). When testing 
the model and comparing its detections with those of a 
taxonomist, we observed instances of false negatives, 
indicating that the model fails to detect all the target 
organisms present in some images. González-Rivero et al. 
(2020) showed similar results regarding the precision of 
a deep learning model trained to identify benthic organ-
isms in coral reefs compared to expert identifications. 

Fig. 3  Examples of some detections made by the model. The differently colored bounding boxes indicate closed (pink) and open (red) coral
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However, in contrast to the present study, some classes 
of organisms were not defined at the genus or species 
level. In both studies, we can conclude that automatic 
image analysis will not replace expert observation but 
will serve as a complementary tool for monitoring tasks, 

considering the high speed of detection in large volumes 
of images.

While it is acknowledged that the model has limita-
tions in detecting corals within high-density populations, 
it is important to note that this is a common challenge in 

Fig. 5  Confusion matrix (normalized values) showing the ground truth and model predicted classes. In addition to the open and closed coral 
classes (Tubastraea open and Tubastraea closed), the model generated a third class defined as background

Fig. 4  Loss, precision, recall, mAP50 and mAP50-95 curves. The horizontal axis represents the number of epochs. On the left, the loss plots–
box_loss, cls_loss and dfl_loss–are shown for both the training and validation stages. Additional performance metrics are shown on the right. The 
mAP50-95 indicates the average accuracy value when the confidence level is set at 95%
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object detection tasks, especially in complex and crowded 
scenes (Elias 2023; Xu et  al. 2023). The performance of 
the model could be further evaluated using datasets with 
a higher proportion of densely populated coral scenes to 
assess its limitations comprehensively. The model is not 
intended to replace human expertise but rather to serve 
as a valuable tool for coral identification and monitoring. 
By providing a preliminary assessment of large datasets, 
the model can help to prioritize areas for further expert 
investigation.

To optimize the model’s detection capabilities, tasks 
such as diversifying the image set and including addi-
tional object classes could improve its ability to distin-
guish sun corals from the background. The sharpness 
factor of underwater images has likely influenced the 
detection process, as noted by other studies (Gómez-Ríos 
et  al. 2019a; González-Rivero et  al. 2020; Lumini et  al. 
2023). This highlights the inherent challenges of work-
ing with underwater images, which often involve issues 
such as brightness, particulate matter, high diversity of 
organisms in the same frame, and proximity of organisms 
(aggregations) (Gómez-Ríos et al. 2019a).

Fig. 6  Behavior of classes and overall representation of bounding boxes in the model, taking into account the instances, format, position (x, y), 
and size (height, width)

Fig. 7  Example of detections in the test dataset. Images include 
the class name and confidence level. a, the model shows false 
negatives by detecting only one colony; b, the model was able 
to detect all the colonies present
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Considering the DAFOR scale (Sutherland 2006), 
which has been applied in studies related to sun coral 
(Silva et  al. 2011; Mondal et  al. 2018; Machado et  al. 
2023), the most suitable categories for applying this 
model, based on the results of the test phase are: rare 
(1%–10% coverage), occasional (11%–25% coverage), and 
frequent (26%–50% coverage). Despite its estimated and 
subjective nature, this scale can be used effectively along-
side the current model for early detection and monitor-
ing of sun corals.

Piechaud and Howell (2022) used a YOLO model to 
map a deep-water xenophyophore species at a depth of 
1200 m. Their results confirm that this detection method, 
when combined with technologies such as autonomous 
underwater vehicles (AUVs), offers an effective alter-
native for monitoring marine biodiversity in scenarios 
where traditional techniques, such as a visual census 
by divers, are risky or unfeasible. Similarly, the present 
model could be incorporated into inspection routines 
using remotely operated vehicles (ROVs) for various 
applications, including the monitoring of ship hulls, coral 
reefs, and seabeds based on local bioinvasion inspection 
and control needs.

5 � Conclusions
This study demonstrates the feasibility and potential 
of computer vision for the automated early detection 
of invasive sun coral (Tubastraea spp.) in underwater 
imagery. Using a CNN, we achieved a high accuracy 
of over 90% in detecting sun corals and a rapid object 
identification per instance (16 ms), demonstrating the 
model’s ability to assist experts in rapid and efficient 
monitoring. The application of computer vision in this 
study suggests its potential in the field of marine ecol-
ogy and conservation and could be used to monitor 
areas susceptible to bioinvasion, such as port regions, 
offshore activity zones, and marine protected areas.

While the proposed YOLOv8 showed promising 
results, comparisons with other deep learning models 
and investigations into standardized image acquisition 
protocols can help refine this technology. Comparison 
with detections of taxonomists suggests that the model, 
although still in need of improvement to reduce false 
negatives in the images, can be implemented as a sup-
porting tool for monitoring activities and early detec-
tion of sun corals. Future research directions may 
include investigating other invasive species, leveraging 
annotated image datasets from scientific collections to 
train more versatile models, and exploring techniques 
such as ensemble methods or data augmentation spe-
cifically designed for dense object detection.
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